I. xEV Market Trends

1. Overview
 • Recent EV-Market Boosters
 • Market Drivers
 • In 2010 to 2016, most automakers introduced ‘Compliance Cars’
 • Battery-EVs: Main Development and Direction
 • PHEVs: Main Development and Direction
 • Strong HEVs: Main Development and Direction
 • Mild to Advanced Micro-HEVs (MHEVs): Main Development and Direction
 • Powertrain Electrification and Impact on CO2 Emissions
 • xEV Market Drivers and Market Share by Category

2. Vehicles Markets by Region
 • Worldwide Sales of Top Electric Vehicles (2018)
 • Worldwide Sales of Top Plug-In Electric Vehicles (2018)
 • Current Chinese xEV Market Trends: Market Drivers – Government
 • China NEV Subsidy 2018 versus 2017
 • Current Chinese xEV Market Trends: Market Drivers – Automakers
 • Chinese Sales of Top Electric Vehicles (2018)
 • Chinese Sales of Top Plug-In Electric Vehicles (2018)
 • Chinese “Logistic EVs”
 • Chinese NEV (PHEV + EV) Market, 000 units
 • Current European xEV Market Trends – Market Drivers
 • European Sales of Top Electric Vehicles (2018)
 • European Sales of Top Plug-In Electric Vehicles (2018)
 • Current European xEV Market Trends – EVs
 • Current European xEV Market Trends – PHEVs
 • Current European xEV Market Trends – Strong Hybrids (HEVs)
 • Current European xEV Market Trends – Mild Hybrids (MHEVs)
 • Current European xEV Market Trends – Micro Hybrids (μHEVs)
 • Current U.S. xEV Market Trends – Market Drivers
 • 2018 EV US Sales
 • Current U.S. xEV Market Trends – EVs
 • 2018 PHEV US Sales
 • Current U.S. xEV Market Trends – PHEVs
 • Current U.S. xEV Market Trends – Strong HEVs
 • Current U.S. xEV Market Trends – MHEVs
 • Current Japanese xEV Market Trends – Hybrids
 • Current Japanese xEV Market Trends – PHEVs/ EVs
 • Current xEV Market Trends – Rest of the World (ROW)

3. Vehicle Market Forecast to 2020
 • HEV Market by Vehicle Producer 2010 – 2020
 • HEV Market by Hybrid Category
 • EV Market Forecast
 • EV Market Forecast – Excluding Chinese Automakers
 • PHEV Market by Producer
 • EV Market (Forecast) by World Region
 • EV Market Growth by World Region
 • PHEV Market Forecast by World Region

4. Vehicle Market Forecast Beyond 2020
 • EV Market Development to 2025 and Beyond
 • Market Growth Beyond 2015 – Customer Pull?
 • xEV Market Driver and Share by Category
 • 2025 xEV Market Share Forecast by Region: Our Baseline Estimate
 • 2025 xEV Market Forecast by Region
 • 2030 xEV Market Share Forecast by Region: Our Baseline Estimate
 • 2030 xEV Market Forecast by Region

5. Directions of Individual Carmakers
 • Direction of Key European Carmakers
 • Direction of International Carmakers
 • Direction of Japanese Carmakers
 • Toyota / Lexus
 • 2001-17 Toyota HEV Family
II. Lithium-Ion Battery Technology for xEVs

1. Key Battery Design Parameters
 - Historical xEV Battery Development
 - xEV Battery Technology Overview
 - The Lithium-Ion Cell
 - Li-Ion Cell Stack
 - Cell Design & Casing: Pouch, Cylindrical, or Prismatic
 - Cell Casing: Cylindrical
 - Cell Casing: Prismatic and Pouch
 - Cathode Chemistry: Ni-Based
 - Cathode: NMC is the Focus for Large-Cell EV Batteries
 - Cathode Chemistry: Other
 - Anode: Graphite-Based
 - Status of Graphite
 - Si-Blend Anode
 - Electrolytes
 - Separator
 - Solid Electrolyte/Separator?
 - xEV Battery Power and Energy Level vs. Applications
 - xEV Battery Pack Energy Density vs. Power Level

2. Mild and Strong Hybrid Batteries
 - Requirements
 - Batteries for Strong Hybrids
 - 2001-17 Toyota HEV NiMH: Battery Pack Parameters
 - HEV Li-Ion Cell Current Design Matrix
 - Li-Ion Prismatic Metal-Can Cells Involved in Production HEVs
 - Li-Ion HEV Cell Materials Cost
 - Li-Ion HEV 5-Ah Cell Price
 - Li-Ion HEV: Key Cost Components
 - Cell and Pack Design, and Cost
 - 48V Mild Hybrids: Battery Requirements and Selection
 - 48V Battery Solutions
 - Audi 48V Battery System Requirements
 - 48V, 0.37-kWh Liquid-Cooled SDI Pack for Jeep Wrangler
 - LG Chem 9.8-Ah Pouch Cell for Mild Hybrids
 - 10-Ah MHEV Cell Price 2020
 - 48V MHEV, 2025 Cell Materials Cost
 - 48V MHEV, 2025 Cell Price
 - 48V Cell and Battery Design Evolution
 - Audi’s 48V Battery System Requirement Evolution Forecast
 - 14V Micro-2 Hybrids: Energy-Storage Solutions
 - Micro-2 Hybrids: Energy-Storage Solutions (2)
 - Micro-2 Hybrids: Energy-Storage Solutions (3)
 - Low-Voltage Hybrid Li-Ion Cell Design

3. EV & PHEV Battery Technology
 - PHEV Battery Technology Evolution
 - Battery Pack Capacity for PHEVs
 - PHEV Battery Pack – Specific Energy
 - PHEV Battery Pack – Capacity vs. Launch Year
 - PHEV Battery Pack – Specific Energy vs. Launch Year
 - PHEV Cell and Pack – 2017 Market
 - Mercedes PHEV Battery-Pack Parameters
 - PHEV-2 Roadmap
 - EV Cell and Battery Design, Energy & Power Density
 - EV Pack Key Characteristics since 1996
 - Battery Packs for EVs vs. Launch Year
 - Li-Ion Cells Employed in EVs 2008-2017
 - Key Characteristics of EV Cells Utilized in EV Packs 2017
 - Battery Packs for EVs – Specific Energy vs. Launch Year
 - Specific Energy of EV Battery Packs
 - Cells Delivering 600Wh/liter are Being Qualified
 - VW’s Aggressive Technology Roadmap
 - Li-Ion Cell Energy Density Evolution
 - Where is the improvement in energy density coming from?
• **Life and Safety**
 - EV & PHEV Battery Life
 - Tesla Battery Capacity versus Driven km (as published by Tesla Drivers Club)
 - Li-Ion Battery Safety
 - Safety at Module and Pack Levels
 - Safety: Key Issues
 - Safety Enhancement and its Cost
 - Fast Charge & Battery Design
 - Impact of Fast Charge on Cost and Energy Density
 - Fast-Charge Tesla Batteries: about 50% in 30 minutes

4. **EV and PHEV Battery Cost**
• **Cost of Materials**
 - Nickel Pricing
 - Class 1 Nickel Supply and Demand
 - Cobalt Pricing $/kg
 - Lithium Pricing
 - NMC (6,2,2) Cost Estimate
 - NCA (90,6,4) Cost 2018-2020
 - NCA (90, 06, 04) Cost 2025
 - 37-Ah PHEV Cell Materials Cost
 - 3.4-Ah 18650 Cell Materials Cost
 - 21700 Cell Materials Cost – 2020
 - 56-Ah EV Pouch Cell Materials Cost

• **Cell and Battery Cost**
 - 37-Ah PHEV Cell Price
 - Cell Price for a 44 Ah Prismatic PHEV cell (2020)
 - 3.4-Ah 18650 Cell Price, 2016
 - 56-Ah EV Pouch Cell Price, 2018
 - 21700 Cell Price, 2020
 - 65Ah Pouch Cell Price, 2020
 - 78Ah EV Pouch Cell Price Estimate, 2025

• **Cost Reduction Trajectory**
 - PHEV Battery Price Trends
 - VW’s Aggressive (unrealistic?) Price Target for Cells and Packs
 - GM’s Roadmap for EV Cell Pricing, Chevy Bolt
 - EV Battery Price Trends
 - Cost-Reduction Roadmaps—Issues
 - EV Battery Cost Estimate
 - xEV Battery Cost Estimate

III. **Battery Technology: Is there a Future Beyond Lithium Ion?**

1. **xEV Batteries’ Desired Attributes and Characteristics of 2025 Li-Ion Batteries**
 - Automakers’ Expectations for Key Performance Values of Battery-EV Li-Ion Cells
 - Automakers’ Expectations of 2025 Li-ion BEVs
 - Fast-Pace Expansion History of Li-Ion Batteries
 - Future Automotive Cell Requirements - Other Applications
 - Direction of Automotive Li-Ion Battery Development

• **So What is the BEV Cell Development Matrix?**
• **Automakers’ EV-Battery Needs for Faster BEV Expansion Beyond 2028**

2. **Anode Opportunities: Silicon and Metallic Lithium**
• Silicon-based Anodes
• Silicon Anode Pre-Lithiation
• Metallic Lithium Anode
• 1975-1977, Li/TiS2 and LiAl/TiS2 Rechargeable Cells - EXXON
• 1986-1990: Li/MoS2 Rechargeable Cells – Moli Energy
• Valence Technology 1994 Li/’Wet’ Polymer/VOx Cell Phone Cells
• Li-Metal Rechargeable Batteries
• Li-Metal Anode Cost and Processing
• Lithium Foil Pricing
• Metallic Li Anode – The Electrolyte Challenge

3. **Solid Electrolyte: Promise and Challenges**
• Solid Electrolyte for Lithium-Metal Rechargeable Batteries
• Solid Electrolytes – High-Level View
• Challenges of Solid Electrolytes in all Solid-State Li-Metal Cells
• Solid-State Batteries: Overview
• Many Electrolyte Families Under Development
• Limitations of Solid Electrolytes
• Key Characteristics of Contending Solid Electrolytes
• Solid Polymer Electrolytes ‘Dry’ (SPE) and ‘Gels’
• Ionic Conductivity of Inorganic Solid Electrolytes
• The Lithium Protective Layer: Status and Challenges
• The Lithium Protective-Layer Approach
• Protected Li Metal Anodes

4. **Li/SE versus C-Gr/LE; Energy Density and Cost**
• Li-NMC: the Most Promising of the ‘Future Technologies’
• Volumetric Energy Density – Li-NMC versus Gr-NMC Cell Design Matrix
• Volumetric Energy Density – Li/NMC versus Gr-NMC Cells
• Li-NMC: Can we achieve cost parity with Gr-NMC?
• Li/NMC versus Gr-Si/NMC

5. **Cathode Development: Is There a Future Beyond High-Nickel NMC?**
• Li/Air or Li/Sulfur Chemistries – Volumetric Energy Density
• Li Ion versus Li/S – Battery Requirement Spider Diagram
• New Cathodes

6. **Future EV Battery Technology Synopsis**
• Beyond Li Ion before 2030?
• CONCLUSIONS: Beyond Li Ion for Mass-Market EVs?
• Conclusions: Post-Li-Ion Opportunity
• What is the Automakers’ True Evaluation of Post Li Ion for EVs? Hype or Real Promise?
IV. xEV Battery Market Forecast to 2025

1. xEV Battery Market Overview
 - xEV Battery Market Overview
 - 2017 Automotive Li-Ion Battery Market
 - 2018 Automotive Li-Ion Battery Market
 - xEV Battery Pack Business
 - 2020 Automotive Li-Ion Battery Market
 - xEV Li-Ion Battery Market 2020
 - 2025 Automotive Li-Ion Battery Market

2. Mild and Strong Hybrids
 - Strong HEV OEM/Supplier Relationships
 - Mild HEV OEM/Supplier Relationships
 - HEV Battery-Pack Market
 - Li-Ion HEV Battery Module Market

3. EVs and PHEV
 - PHEV OEM/Supplier Relationships
 - PHEV Battery Cell Market by Producer
 - EV OEM/Supplier Relationships
 - EV Battery Cell Market by Producer
 - Combined EV & PHEV Cell Market by Producer
 - xEV Battery Shipments by Chinese Producer, MWh
 - Automotive Li-Ion Battery Business – 2025 Base Case
 - 2030 xEV Battery Business – Base Case

4. Demand for Materials
 - HEV Cell Materials Demand 2020
 - PHEV-EV Cell Materials Demand 2020
 - xEV 2020 Key Cell Materials
 - 2025 xEV Battery Materials Demand
 - xEV 2025 Key Raw Materials Demand Forecast

5. Directions of Individual Cell Makers
 - Panasonic
 - LG Chem Key Product
 - LG Chem Cells and Packs
 - LG Chem EV Cells
 - LG Chem Cells and Pack – 2017 Chrysler Pacifica PHEV
 - LG Chem Cells and Packs for Volvo PHEVs
 - LG Chem – PHEV Battery Cells
 - LG Chem – Other
 - Samsung SDI
 - CATL
 - BYD
 - Chinese Market – Battery Makers
 - SK Innovation
 - AESC Advanced Energy Supply Corporation
 - GS Yuasa Group
 - Toshiba
 - Hitachi Vehicle Energy
 - A123 Systems
 - Johnson Controls

V. Appendix

1. Levels of Vehicle Hybridization/Electrification
 - Key Hybrid Functions
 - Which level of electrification?
 - Micro-1 Hybrids (Stop/Start)
 - Micro-2 Hybrids
 - 48V Mild Hybrids
 - 100-140V Mild Hybrids
 - Strong Hybrids
 - Plug-in Hybrids
 - History of EV Battery Development
 - Electric Vehicles
 - Fuel-Cell Vehicles
 - Heavy-Duty Vehicles

2. Lead-Acid and NiMH HEV Batteries and Ultracapacitors
 - Enhanced Flooded Lead-Acid Battery Design (Exide)
 - Valve-Regulated Lead Acid
 - Lead Acid in Future Automotive
 - EC Capacitors
 - Nickel Metal Hydride HEV Cells
 - Commercial Status of NiMH
 - Lead Acid Producers – U.S. & Europe
 - Lead Acid Producers – Japan
 - NiMH producers Primearth EV Energy

3. Levels of Vehicle Hybridization
 - EVs
 - PHEVs
 - HEVs
 - Mild HEVs
 - Strong HEVs
 - Plug-in HEVs
 - Heavy-Duty Vehicles